共计 3427 个字符,预计需要花费 9 分钟才能阅读完成。
pagerank 算法怎么理解,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。
1. PageRank 算法概述
PageRank, 即网页排名,又称网页级别、Google 左侧排名或佩奇排名。
是 Google 创始人拉里 middot; 佩奇和谢尔盖 middot; 布林于 1997 年构建早期的搜索系统原型时提出的链接分析算法,自从 Google 在商业上获得空前的成功后,该算法也成为其他搜索引擎和学术界十分关注的计算模型。目前很多重要的链接分析算法都是在 PageRank 算法基础上衍生出来的。PageRank 是 Google 用于用来标识网页的等级 / 重要性的一种方法,是 Google 用来衡量一个网站的好坏的唯一标准。在揉合了诸如 Title 标识和 Keywords 标识等所有其它因素之后,Google 通过 PageRank 来调整结果,使那些更具“等级 / 重要性”的网页在搜索结果中另网站排名获得提升,从而提高搜索结果的相关性和质量。其级别从 0 到 10 级,10 级为满分。PR 值越高说明该网页越受欢迎(越重要)。例如:一个 PR 值为 1 的网站表明这个网站不太具有流行度,而 PR 值为 7 到 10 则表明这个网站非常受欢迎(或者说极其重要)。一般 PR 值达到 4,就算是一个不错的网站了。Google 把自己的网站的 PR 值定到 10,这说明 Google 这个网站是非常受欢迎的,也可以说这个网站非常重要。
2. 从入链数量到 PageRank
在 PageRank 提出之前,已经有研究者提出利用网页的入链数量来进行链接分析计算,这种入链方法假设一个网页的入链越多,则该网页越重要。早期的很多搜索引擎也采纳了入链数量作为链接分析方法,对于搜索引擎效果提升也有较明显的效果。PageRank 除了考虑到入链数量的影响,还参考了网页质量因素,两者相结合获得了更好的网页重要性评价标准。
对于某个互联网网页 A 来说,该网页 PageRank 的计算基于以下两个基本假设:
数量假设:在 Web 图模型中,如果一个页面节点接收到的其他网页指向的入链数量越多,那么这个页面越重要。
质量假设:指向页面 A 的入链质量不同,质量高的页面会通过链接向其他页面传递更多的权重。所以越是质量高的页面指向页面 A,则页面 A 越重要。
利用以上两个假设,PageRank 算法刚开始赋予每个网页相同的重要性得分,通过迭代递归计算来更新每个页面节点的 PageRank 得分,直到得分稳定为止。PageRank 计算得出的结果是网页的重要性评价,这和用户输入的查询是没有任何关系的,即算法是主题无关的。假设有一个搜索引擎,其相似度计算函数不考虑内容相似因素,完全采用 PageRank 来进行排序,那么这个搜索引擎的表现是什么样子的呢?这个搜索引擎对于任意不同的查询请求,返回的结果都是相同的,即返回 PageRank 值最高的页面。
3. PageRank 算法原理
PageRank 的计算充分利用了两个假设:数量假设和质量假设。步骤如下:
1)在初始阶段:网页通过链接关系构建起 Web 图,每个页面设置相同的 PageRank 值,通过若干轮的计算,会得到每个页面所获得的最终 PageRank 值。随着每一轮的计算进行,网页当前的 PageRank 值会不断得到更新。
2)在一轮中更新页面 PageRank 得分的计算方法:在一轮更新页面 PageRank 得分的计算中,每个页面将其当前的 PageRank 值平均分配到本页面包含的出链上,这样每个链接即获得了相应的权值。而每个页面将所有指向本页面的入链所传入的权值求和,即可得到新的 PageRank 得分。当每个页面都获得了更新后的 PageRank 值,就完成了一轮 PageRank 计算。
3.2 基本思想:
如果网页 T 存在一个指向网页 A 的连接,则表明 T 的所有者认为 A 比较重要,从而把 T 的一部分重要性得分赋予 A。这个重要性得分值为:PR(T)/L(T)
其中 PR(T)为 T 的 PageRank 值,L(T) 为 T 的出链数
则 A 的 PageRank 值为一系列类似于 T 的页面重要性得分值的累加。
即一个页面的得票数由所有链向它的页面的重要性来决定,到一个页面的超链接相当于对该页投一票。一个页面的 PageRank 是由所有链向它的页面(链入页面)的重要性经过递归算法得到的。一个有较多链入的页面会有较高的等级,相反如果一个页面没有任何链入页面,那么它没有等级。
3.3 PageRank 简单计算:
假设一个由只有 4 个页面组成的集合:A,B,C 和 D。如果所有页面都链向 A,那么 A 的 PR(PageRank)值将是 B,C 及 D 的和。
继续假设 B 也有链接到 C,并且 D 也有链接到包括 A 的 3 个页面。一个页面不能投票 2 次。所以 B 给每个页面半票。以同样的逻辑,D 投出的票只有三分之一算到了 A 的 PageRank 上。
例子:
如图 1 所示的例子来说明 PageRank 的具体计算过程。
这个公式就是.S Brin 和 L. Page 在《The Anatomy of a Large- scale Hypertextual Web Search Engine Computer Networks and ISDN Systems》定义的公式。
所以一个页面的 PageRank 是由其他页面的 PageRank 计算得到。Google 不断的重复计算每个页面的 PageRank。如果给每个页面一个随机 PageRank 值(非 0),那么经过不断的重复计算,这些页面的 PR 值会趋向于正常和稳定。这就是搜索引擎使用它的原因。
4. PageRank 幂法计算 (线性代数应用)
4.1 完整公式:
关于这节内容,可以查阅:谷歌背后的数学
首先求完整的公式:
Arvind Arasu 在《Junghoo Cho Hector Garcia – Molina, Andreas Paepcke, Sriram Raghavan. Searching the Web》更加准确的表达为:
是被研究的页面,链入页面的数量,链出页面的数量,而 N 是所有页面的数量。
PageRank 值是一个特殊矩阵中的特征向量。这个特征向量为:
如果网页 i 有指向网页 j 的一个链接,则
=0。
4.2 使用幂法求 PageRank
那我们 PageRank 公式可以转换为求解 /N。P 为概率转移矩阵,=
) {// 如果最后两次的结果近似或者相同,返回 R
return R;
} else {
X =R;
R = AX;
}
}
4.3 求解步骤:
一、P 概率转移矩阵的计算过程:
先建立一个网页间的链接关系的模型, 即我们需要合适的数据结构表示页面间的连接关系。
1) 首先我们使用图的形式来表述网页之间关系:
现在假设只有四张网页集合:A、B、C,其抽象结构如下图 1:
图 2 网页链接矩阵: 图 3 网页链接概率矩阵:
图 4 P’的转置矩 阵
二、A 矩阵计算过程。
1)P 概率转移矩阵 :
/N 为:
/N = 0.85 times; P + 0.15 *
初始每个网页的 PageRank 值均为 1,即 X~t = (1,1,1)。
三、 循环迭代计算 PageRank 的过程
第一步:
继续迭代这个过程 …
直到最后两次的结果近似或者相同,即 R 最终收敛,R 约等于 X,此时计算停止。最终的 R 就是各个页面的 PageRank 值。
用幂法计算 PageRank 值总是收敛的,即计算的次数是有限的。
Larry Page 和 Sergey Brin 两人从理论上证明了不论初始值如何选取,这种算法都保证了网页排名的估计值能收敛到他们的真实值。
由于互联网上网页的数量是巨大的,上面提到的二维矩阵从理论上讲有网页数目平方之多个元素。如果我们假定有十亿个网页,那么这个矩阵 就有一百亿亿个元素。这样大的矩阵相乘,计算量是非常大的。Larry Page 和 Sergey Brin 两人利用稀疏矩阵计算的技巧,大大的简化了计算量。
5. PageRank 算法优缺点
优点:
是一个与查询无关的静态算法,所有网页的 PageRank 值通过离线计算获得;有效减少在线查询时的计算量,极大降低了查询响应时间。
缺点:
1)人们的查询具有主题特征,PageRank 忽略了主题相关性,导致结果的相关性和主题性降低
2)旧的页面等级会比新页面高。因为即使是非常好的新页面也不会有很多上游链接,除非它是某个站点的子站点。
看完上述内容,你们掌握 pagerank 算法怎么理解的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注丸趣 TV 行业资讯频道,感谢各位的阅读!