MySQL索引的使用原则

70次阅读
没有评论

共计 4002 个字符,预计需要花费 11 分钟才能阅读完成。

本篇内容主要讲解“MySQL 索引的使用原则”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让丸趣 TV 小编来带大家学习“MySQL 索引的使用原则”吧!

一、存储引擎的比较

注:上面提到的 B 树索引并没有指出是 B -Tree 和 B +Tree 索引,但是 B - 树和 B + 树的定义是有区别的。

在 MySQL 中,主要有四种类型的索引,分别为:B-Tree 索引,Hash 索引,Fulltext 索引和 R-Tree 索引。

B-Tree 索引是 MySQL 数据库中使用最为频繁的索引类型,除了 Archive 存储引擎之外的其他所有的存储引擎都支持 B-Tree 索引。Archive 引擎直到 MySQL 5.1 才支持索引,而且只支持索引单个 AUTO_INCREMENT 列。

不仅仅在 MySQL 中是如此,实际上在其他的很多数据库管理系统中 B -Tree 索引也同样是作为最主要的索引类型,这主要是因为 B-Tree 索引的存储结构在数据库的数据检索中有非常优异的表现。

一般来说,MySQL 中的 B-Tree 索引的物理文件大多都是以 Balance Tree 的结构来存储的,也就是所有实际需要的数据都存放于 Tree 的 Leaf Node(叶子节点),而且到任何一个 Leaf Node 的最短路径的长度都是完全相同的,所以我们大家都称之为 B-Tree 索引。

当然,可能各种数据库(或 MySQL 的各种存储引擎)在存放自己的 B-Tree 索引的时候会对存储结构稍作改造。

如 Innodb 存储引擎的 B-Tree 索引实际使用的存储结构实际上是 B+Tree,也就是在 B-Tree 数据结构的基础上做了很小的改造,在每一个 Leaf Node 上面出了存放索引键的相关信息之外,还存储了指向与该 Leaf Node 相邻的后一个 LeafNode 的指针信息(增加了顺序访问指针),这主要是为了加快检索多个相邻 Leaf Node 的效率考虑。

InnoDB 是 Mysql 的默认存储引擎(Mysql5.5.5 之前是 MyISAM)

接下来我们先看看 B - 树、B+ 树的概念。弄清楚,为什么加了索引查询速度会加快?

二、B- 树、B+ 树概念

B 树

即二叉搜索树:

1、所有非叶子结点至多拥有两个儿子(Left 和 Right);

2、所有结点存储一个关键字;

3、非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树;

如:

B- 树

是一种多路搜索树(并不是二叉的):

1、定义任意非叶子结点最多只有 M 个儿子;且 M 2;

2、根结点的儿子数为[2, M];

3、除根结点以外的非叶子结点的儿子数为[M/2, M];

4、每个结点存放至少 M /2-1(取上整)和至多 M - 1 个关键字;(至少 2 个关键字)

5、非叶子结点的关键字个数 = 指向儿子的指针个数 -1;

6、非叶子结点的关键字:K[1], K[2], …, K[M-1];且 K[i] K[i+1];

7、非叶子结点的指针:P[1], P[2], …, P[M];其中 P[1]指向关键字小于 K[1]的子树,P[M]指向关键字大于 K[M-1]的子树,其它 P[i]指向关键字属于 (K[i-1], K[i]) 的子树;

8、所有叶子结点位于同一层;

如:(M=3)

B- 树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点;

B- 树的特性:

1、关键字集合分布在整颗树中;

2、任何一个关键字出现且只出现在一个结点中;

3、搜索有可能在非叶子结点结束;

4、其搜索性能等价于在关键字全集内做一次二分查找;

5、自动层次控制;

由于限制了除根结点以外的非叶子结点,至少含有 M / 2 个儿子,确保了结点的至少利用率。

所以 B - 树的性能总是等价于二分查找(与 M 值无关),也就没有 B 树平衡的问题;

由于 M / 2 的限制,在插入结点时,如果结点已满,需要将结点分裂为两个各占 M / 2 的结点;删除结点时,需将两个不足 M / 2 的兄弟结点合并;

B+ 树

B+ 树是 B - 树的变体,也是一种多路搜索树:

1、其定义基本与 B - 树同,除了:

2、非叶子结点的子树指针与关键字个数相同;

3、非叶子结点的子树指针 P[i],指向关键字值属于 [K[i], K[i+1]) 的子树(B- 树是开区间);

5、为所有叶子结点增加一个链指针;

6、所有关键字都在叶子结点出现;

如:(M=3)

B+ 的搜索与 B - 树也基本相同,区别是 B + 树只有达到叶子结点才命中(B- 树可以在

非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;

B+ 的特性:

1、所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;

2、不可能在非叶子结点命中;

3、非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;

4、更适合文件索引系统;

了解 B -/B+ 树的概念之后,我们继续分析 B + 树提高效率的原理。

三、B+ 树索引原理

如上图,是一颗 b + 树,关于 b + 树的定义可以参见 B + 树,这里只说一些重点,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),如磁盘块 1 包含数据项 17 和 35,包含指针 P1、P2、P3,P1 表示小于 17 的磁盘块,P2 表示在 17 和 35 之间的磁盘块,P3 表示大于 35 的磁盘块。真实的数据存在于叶子节点即 3、5、9、10、13、15、28、29、36、60、75、79、90、99。非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如 17、35 并不真实存在于数据表中。

b+ 树的查找过程

如图所示,如果要查找数据项 29,那么首先会把磁盘块 1 由磁盘加载到内存,此时发生一次 IO,在内存中用二分查找确定 29 在 17 和 35 之间,锁定磁盘块 1 的 P2 指针,内存时间因为非常短(相比磁盘的 IO)可以忽略不计,通过磁盘块 1 的 P2 指针的磁盘地址把磁盘块 3 由磁盘加载到内存,发生第二次 IO,29 在 26 和 30 之间,锁定磁盘块 3 的 P2 指针,通过指针加载磁盘块 8 到内存,发生第三次 IO,同时内存中做二分查找找到 29,结束查询,总计三次 IO。真实的情况是,3 层的 b + 树可以表示上百万的数据,如果上百万的数据查找只需要三次 IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次 IO,那么总共需要百万次的 IO,显然成本非常非常高。

b+ 树性质

1、通过上面的分析,我们知道 IO 次数取决于 b + 数的高度 h,假设当前数据表的数据为 N,每个磁盘块的数据项的数量是 m,则有 h =㏒(m+1)N,当数据量 N 一定的情况下,m 越大,h 越小;而 m = 磁盘块的大小 / 数据项的大小,磁盘块的大小也就是一个数据页的大小,是固定的,如果数据项占的空间越小,数据项的数量越多,树的高度越低。这就是为什么每个数据项,即索引字段要尽量的小,比如 int 占 4 字节,要比 bigint8 字节少一半。这也是为什么 b + 树要求把真实的数据放到叶子节点而不是内层节点,一旦放到内层节点,磁盘块的数据项会大幅度下降,导致树增高。当数据项等于 1 时将会退化成线性表。

2、当 b + 树的数据项是复合的数据结构,比如 (name,age,sex) 的时候,b+ 数是按照从左到右的顺序来建立搜索树的,比如当 (张三,20,F) 这样的数据来检索的时候,b+ 树会优先比较 name 来确定下一步的所搜方向,如果 name 相同再依次比较 age 和 sex,最后得到检索的数据;但当 (20,F) 这样的没有 name 的数据来的时候,b+ 树就不知道下一步该查哪个节点,因为建立搜索树的时候 name 就是第一个比较因子,必须要先根据 name 来搜索才能知道下一步去哪里查询。比如当 (张三,F) 这样的数据来检索时,b+ 树可以用 name 来指定搜索方向,但下一个字段 age 的缺失,所以只能把名字等于张三的数据都找到,然后再匹配性别是 F 的数据了,这个是非常重要的性质,即索引的最左匹配特性。

慢查询优化

关于 MySQL 索引原理是比较枯燥的东西,大家只需要有一个感性的认识,并不需要理解得非常透彻和深入。我们回头来看看一开始我们说的慢查询,了解完索引原理之后,大家是不是有什么想法呢?先总结一下索引的几大基本原则

四、建索引的几大原则

1、最左前缀匹配原则,非常重要的原则,mysql 会一直向右匹配直到遇到范围查询 (、、between、like) 就停止匹配,比如 a 1= and= b= 2 c= 3 and d = 4 如果建立 (a,b,c,d) 顺序的索引,d 是用不到索引的,如果建立 (a,b,d,c) 的索引则都可以用到,a,b,d 的顺序可以任意调整。

2、= 和 in 可以乱序,比如 a = 1 and b = 2 and c = 3 建立 (a,b,c) 索引可以任意顺序,mysql 的查询优化器会帮你优化成索引可以识别的形式

3、尽量选择区分度高的列作为索引, 区分度的公式是 count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是 1,而一些状态、性别字段可能在大数据面前区分度就是 0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,这个值也很难确定,一般需要 join 的字段我们都要求是 0.1 以上,即平均 1 条扫描 10 条记录

4、索引列不能参与计算,保持列“干净”,比如 from_unixtime(create_time) =’2014-05-29’就不能使用到索引,原因很简单,b+ 树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成 create_time = unix_timestamp(’2014-05-29’);

5、尽量的扩展索引,不要新建索引。比如表中已经有 a 的索引,现在要加 (a,b) 的索引,那么只需要修改原来的索引即可

到此,相信大家对“MySQL 索引的使用原则”有了更深的了解,不妨来实际操作一番吧!这里是丸趣 TV 网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

正文完
 
丸趣
版权声明:本站原创文章,由 丸趣 2023-07-28发表,共计4002字。
转载说明:除特殊说明外本站除技术相关以外文章皆由网络搜集发布,转载请注明出处。
评论(没有评论)